Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5. Angle Modulation

Office Hours:
BKD, 4th floor of Sirindhralai building
Monday $\quad 9: 30-10: 30$
Monday
14:00-16:00
Thursday 16:00-17:00

FM vs. PM

Figure 25

Phase Modulation

Figure 25

$$
m(t)= \begin{cases}0, & t<t_{0} \\ 1, & t>t_{0}\end{cases}
$$

(c)

After time t_{0}, the phase is skipped ahead (advanced) by 90°.

Frequency Modulation

Figure 25

FM vs. PM

Figure 24
N°
(a)

$$
A \cos \left(2 \pi f_{c} t+\phi\right)
$$

(b)

$x_{\mathrm{PM}}(t)$
(c)

$$
x_{\mathrm{FM}}(t)
$$

Frequency Modulation

Figure 24

It should be evident that the frequency is changing.

Frequency Modulation

Figure 24

The time at which $m(t)$ is at its maximum value corresponds to the time at which
$x_{\mathrm{FM}}(t)$ has maximum frequency.

Frequency Modulation

Figure 24

The time at which $m(t)$ is at its minimum value corresponds to the time at which
$x_{\mathrm{FM}}(t)$ has minimum frequency.

Frequency Modulation

Figure 24

The time interval during which $m(t)$ is increasing corresponds to the time interval during which $x_{\mathrm{FM}}(t)$ has increasing frequency.

Frequency Modulation

Figure 24

The time interval during which $\boldsymbol{m}(\boldsymbol{t})$ is decreasing corresponds to the time interval during which $\mathcal{X}_{\mathrm{FM}}(\boldsymbol{t})$ has decreasing frequency.

Phase Modulation

Figure 24

(a)

In $x_{\mathrm{PM}}(t)$, the phase varies in proportion with $m(t)$.
When $m(t)$ and hence the phase of $x_{\mathrm{PM}}(t)$ change continuously, it is difficult to see the connection with the actual plot of $x_{\mathrm{PM}}(t)$.

$$
x_{\mathrm{PM}}(t)
$$

Phase Modulation

Figure 24

One may notice here that, in this example, $x_{\mathrm{PM}}(t)$ is similar to $x_{\mathrm{FM}}(t)$ Except that the graph is shifted. However, it is still not clear (visually) how the graph of $x_{\mathrm{PM}}(t)$ is related to $m(t)$.

$$
x_{\mathrm{PM}}(t)
$$

(c)

$$
x_{\mathrm{FM}}(t)
$$

AM, FM, and PM
Figure 26

Modulating

Amplitude Modulation

Figure 26

Modulating
 signal

$$
\mathrm{AM} \underset{\sim}{\square} \nabla^{-} \overbrace{\square}^{-\bar{A}} x_{\mathrm{AM}}(t)
$$

In $x_{\mathrm{AM}}(t)$, the envelope varies in proportion with $m(t)$.

Frequency Modulation

Figure 26

In $x_{\mathrm{FM}}(t)$, the frequency varies in proportion with $m(t)$.

Phase Modulation

Figure 26

Instantaneous Frequency

- Sinusoidal signal:

$$
g(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

- Frequency $=f_{0}$
- Generalized sinusoidal signal:

$$
g(t)=A \cos (\phi(t))
$$

- Frequency = ?
- Observation: Frequency value may vary as a function of time.
- "instantaneous frequency"
- Why do we need to find the instantaneous frequency?
- Analyze Doppler effect (or Doppler shift)
- Implement frequency modulation (FM)
- where the instantaneous frequency will follow the message $m(t)$.

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

$$
\text { At } t=2, \text { frequency }=?
$$

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

By matching the terms

Instantaneous Frequency

$$
x_{1}(t)=\cos \left(2 \pi t^{2} t\right)
$$

By matching the terms
with $\cos \left(2 \pi f_{0} t\right)$, At $\mathrm{t}=2, f=t^{2}=4 \mathrm{~Hz}$?
you may guess that
$f(t)=t^{2}$

Instantaneous Frequency

Instantaneous Frequency

12 Hz ?

Instantaneous Frequency

- Sinusoidal signal:

$$
g(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

- Frequency $=f_{0}$
- Generalized sinusoidal signal:

$$
g(t)=A \cos (\phi(t))
$$

- The instantaneous frequency at time t is given by

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \phi(t)
$$

Example

$$
f(t)=\frac{1}{2 \pi} \frac{d}{d t} \phi(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(2\left\langle t^{2} t\right)=3 t^{2} \longrightarrow f(2)=3 \times 2^{2}=12\right.
$$

First-order (straight-line) approximation/linearization

- How does the formula $f(t)=\frac{1}{2 \pi} \frac{d}{d t} \phi(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization

First-order (straight-line) approximation/linearization

- How does the formula $f(t)=\frac{1}{2 \pi} \frac{d}{d t} \phi(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization

- When we consider a function $\boldsymbol{\phi}(\boldsymbol{t})$ near a particular time, say, $t=$ t_{0}, the value of the function is approximately

$$
\phi(t) \approx \underbrace{\phi^{\prime}\left(t_{0}\right)}_{\text {slope }}\left(t-t_{0}\right)+\phi\left(t_{0}\right)=\underbrace{\phi^{\prime}\left(t_{0}\right)}_{\text {slope }} t+\underbrace{\phi\left(t_{0}\right)-t_{0} \phi^{\prime}\left(t_{0}\right)}_{\text {constant }}
$$

- Therefore, near $t=t_{0}$,

$$
\cos (\phi(t)) \approx \cos \left(\phi^{\prime}\left(t_{0}\right) t+\phi\left(t_{0}\right)-t_{0} \phi^{\prime}\left(t_{0}\right)\right)
$$

- Now, we can directly compare the terms with $\cos \left(2 \pi f_{0} t+\phi\right)$.

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

First-order (straight-line)

 approximation/linearization- For example, for t near $t=2$,

$$
\left.2 \pi t^{3} \approx 2 \pi\left(3 t^{2}\right)\right|_{t=2}(t-2)+\left.2 \pi t^{3}\right|_{t=2}=2 \pi(12) t-2 \pi(16)
$$

Same idea

- Suppose we want to find $\sqrt{15.9}$.
- Let $g(x)=\sqrt{x}$.
- Note that $\frac{d}{d x} g(x)=\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.
- Approximation: $g(x) \approx g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+g\left(x_{0}\right)$
- 15.9 is near 16.
- $\sqrt{15.9}=g(15.9)$
- $\approx g^{\prime}(16)(15.9-16)+g(16)$
- $=\frac{1}{2 \sqrt{16}}(-0.1)+\sqrt{16}=-\frac{0.1}{8}+4=3.9875$
- MATLAB: >> sqrt(15.9)
ans $=$
3.987480407475377

Phase Modulation

Figure 24

(a)

When $m(t)$ and hence the phase of $x_{\mathrm{PM}}(t)$ change continuously, it is difficult to see the connection with the actual plot of $x_{\mathrm{PM}}(t)$.

New Fact: In $x_{\mathrm{PM}}(t)$, the instantaneous frequency varies in proportion with the slope of $m(t)$.

Phase Modulation

Figure 24

The time at which the slope of $\boldsymbol{m}(\boldsymbol{t})$ is at its maximum value corresponds to the time at which
$x_{\mathrm{PM}}(t)$ has maximum frequency.

New Fact: In $x_{\mathrm{PM}}(t)$, the instantaneous frequency varies in proportion with the slope of $m(t)$.

Phase Modulation

New Fact: In $x_{\mathrm{PM}}(t)$, the instantaneous frequency

Phase Modulation

Figure 24

The time interval
during which the
slope of $\boldsymbol{m}(t)$ is
increasing corresponds to the time interval during which $x_{\mathrm{PM}}(\boldsymbol{t})$ has increasing frequency.

New Fact: In $x_{\mathrm{PM}}(t)$, the instantaneous frequency varies in proportion with the slope of $m(t)$.

FM vs. PM

Figure 28

Remark: To see $x_{P M}(t)$ of time varying $m(t)$, it is usually easier to look at the instantaneous freq. via the derivative first.

FM vs. PM

Elements of digital commu. sys.

Digital Modulation/Demodulation

Digital Version of

- Use digital signal to modulate the amplitude, frequency, or phase of a sinusoidal carrier wave.
- Think of $m(t)$ as a train of scaled (rectangular) pulses.
- The modulated parameter will be switched or keyed from one discrete value to another.
- Three basic forms:
- amplitude-shift keying (ASK)
- frequency-shift keying (FSK)
- phase-shift keying (PSK)

Binary ASK, FSK, and PSK

[Carlson \& Crilly, 2009, Fig 14.1-1 p 649]

Simple ASK: ON-OFF Keying (OOK)

$$
f_{c}=4 \mathrm{~Hz}
$$

Bit rate $=1 \mathrm{bps}$

Simple "ASK": "ON-OFF Keying"

Smoke signal

"It's no use the signal's too weak."

Simple ASK: ON-OFF Keying (OOK)

ASK: Higher Order Modulation

FSK

$$
M=4 \quad f_{c} \in\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}=\{3,6,9,12\}[\mathrm{Hz}]
$$

FSK

$M=4 \quad f_{c} \in\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}=\{3,6,9,12\}[\mathrm{Hz}]$
$\begin{array}{lll}{[11} & 11 & 00\end{array}$
$f_{c}=\left[\begin{array}{llll}12 & 12 & 3 & 12\end{array}\right.$
9
36 9 12

12] Hz

 "WUW级

$$
\mathrm{M}=4 \quad f_{c} \in\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}=\{100,200,300,400\}[\mathrm{Hz}]
$$

$f_{c}=\left[\begin{array}{llllllllll}400 & 400 & 100 & 400 & 300 & 100 & 200 & 300 & 400 & 400\end{array}\right] \mathrm{Hz}$

Five Frequencies

Each tone lasts
$1 / R_{\mathrm{s}}$ sec.

Rate $=R_{s}$ frequency-changes per second

Spectrum of Five Frequencies (1/5)

Spectrum of Five Frequencies (2/5)

100 Hz	200 Hz	300 Hz	400 Hz	500 Hz
$\cos \left(2 \pi f_{1} t\right)$	$\cos \left(2 \pi f_{2} t\right)$	$\cos \left(2 \pi f_{3} t\right)$	$\cos \left(2 \pi f_{4} t\right)$	$\cos \left(2 \pi f_{5} t\right)$

Cosine Pulse

$$
x(t)=\left\{\begin{array}{cc}
\cos (2 \pi(100) t), & 0.5 \leq t \leq 0.6 \\
0, & \text { otherwise }
\end{array}\right.
$$

Spectrum of Five Frequencies (3/5)

Spectrum of Five Frequencies (4/5)

Spectrum of Five Frequencies (5/5)

