Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation

Office Hours:

BKD, 4th floor of Sirindhralai building

Monday Monday Thursday 9:30-10:30 14:00-16:00 16:00-17:00

 \Rightarrow

Frequency Modulation

Figure 25

4

The time at which m(t) is at its maximum value corresponds to the time at which $x_{FM}(t)$ has maximum frequency.

The time at which m(t) is at its minimum value corresponds to the time at which $x_{FM}(t)$ has minimum frequency.

Figure 24

Figure 24

The time interval during which m(t)is **increasing** corresponds to the time interval during which $x_{FM}(t)$ has **increasing frequency**.

Figure 24

The time interval during which m(t)is **decreasing** corresponds to the time interval during which $x_{FM}(t)$ has **decreasing frequency**.

In $x_{AM}(t)$, the **envelope** varies in proportion with m(t).

In $x_{\text{FM}}(t)$, the **frequency** varies in proportion with m(t).

Instantaneous Frequency

• Sinusoidal signal:

$$g(t) = A\cos(2\pi f_0 t + \phi)$$

• Frequency = f_0

• Generalized sinusoidal signal:

$$g(t) = A\cos(\phi(t))$$

• Frequency = ?

• Observation: Frequency value may vary as a function of time.

• "instantaneous frequency"

- Why do we need to find the instantaneous frequency?
 - Analyze Doppler effect (or Doppler shift)
 - Implement frequency modulation (FM)
 - where the instantaneous frequency will follow the message m(t).

Instantaneous Frequency

$$x_1(t) = \cos\left(2\pi t^2 t\right)$$

At t = 2, frequency = ?

Instantaneous Frequency

• Sinusoidal signal:

$$g(t) = A\cos(2\pi f_0 t + \phi)$$

• Frequency = f_0

• Generalized sinusoidal signal: $g(t) = A\cos(\phi(t))$

• The **instantaneous frequency** at time *t* is given by

$$f(t) = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$$

- How does the formula $f(t) = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization

- How does the formula $f(t) = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$ work?
- Technique from Calculus: first-order (tangent-line) approximation/linearization
 - When we consider a function $\phi(t)$ near a particular time, say, $t = t_0$, the value of the function is approximately

300

200

$$\phi(t) \approx \underbrace{\phi'(t_0)(t-t_0)}_{\text{slope}} + \phi(t_0) = \underbrace{\phi'(t_0)t}_{\text{slope}} + \underbrace{\phi(t_0)-t_0\phi'(t_0)}_{\text{constant}}$$

• Therefore, near $t = t_0$,

$$\cos(\phi(t)) \approx \cos(\phi'(t_0)t + \phi(t_0) - t_0\phi'(t_0))$$

• Now, we can directly compare the terms with $\cos(2\pi f_0 t + \phi)$.

• For example, for t near t = 2,

$$2\pi t^{3} \approx 2\pi \left(3t^{2}\right)\Big|_{t=2} \left(t-2\right) + 2\pi t^{3}\Big|_{t=2} = 2\pi \left(12\right)t - 2\pi \left(16\right)$$

• For example, for t near t = 2,

$$2\pi t^{3} \approx 2\pi \left(3t^{2}\right)\Big|_{t=2} \left(t-2\right) + 2\pi t^{3}\Big|_{t=2} = 2\pi \left(12\right)t - 2\pi \left(16\right)$$

• For example, for t near t = 2,

$$2\pi t^{3} \approx 2\pi \left(3t^{2}\right)\Big|_{t=2} \left(t-2\right) + 2\pi t^{3}\Big|_{t=2} = 2\pi \left(12\right)t - 2\pi \left(16\right)$$

Same idea

- Suppose we want to find $\sqrt{15.9}$.
- Let $g(x) = \sqrt{x}$. • Note that $\frac{d}{dx}g(x) = \frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$.
- Approximation: $g(x) \approx g'(x_0)(x x_0) + g(x_0)$
- 15.9 is near 16.

•
$$\sqrt{15.9} = g(15.9)$$

• $\approx g'(16)(15.9 - 16) + g(16)$
• $= \frac{1}{2\sqrt{16}}(-0.1) + \sqrt{16} = -\frac{0.1}{8} + 4 = 3.9875$
• MATLAB: >> sqrt(15.9)
ans =

3.987480407475377

varies in proportion with the **slope** of m(t).

The time at which the **slope** of m(t)is at its **maximum** value corresponds to the time at which $x_{PM}(t)$ has **maximum frequency**.

Figure 24

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

Figure 24

The time at which the **slope** of m(t)is at its **minimum** value corresponds to the time at which $x_{PM}(t)$ has **minimum frequency**.

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

Figure 24

The time interval during which the **slope** of m(t) is **increasing** corresponds to the time interval during which $x_{PM}(t)$ has **increasing frequency**.

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

Remark: To see $x_{PM}(t)$ of time varying m(t), it is usually easier to look at the instantaneous freq. via the derivative first.

Elements of digital commu. sys.

Digital Version of

- Use digital signal to modulate the amplitude, frequency, or phase of a sinusoidal carrier wave.
 - Think of m(t) as a train of scaled (rectangular) pulses.
 - The modulated parameter will be switched or keyed from one discrete value to another.
- Three basic forms:
 - amplitude-shift keying (ASK)
 - frequency-shift keying (FSK)
 - phase-shift keying (PSK)

t

Simple "ASK": "ON-OFF Keying"

Smoke signal

"It's no use the signal's too weak."

Spectrum of Five Frequencies (3/5) 100 Hz 200 Hz 300 Hz 400 Hz 500 Hz $\cos(2\pi f_1 t) \quad \cos(2\pi f_2 t) \quad \cos(2\pi f_3 t) \quad \cos(2\pi f_4 t)$ $\cos(2\pi f_5 t)$ 1 0.5 Ο -0.5 -1 └∽ 0 0.05 0.15 0.2 0.25 0.1 $R_{s} = 20$ Seconds 0.03 Magritude 0.02 0.01 -1000 -800 -600 -400 200 400 600 800 1000 -200 0 Frequency [Hz]

Spectrum of Five Frequencies (5/5)

